(* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is TurboPower Abbrevia * * The Initial Developer of the Original Code is * TurboPower Software * * Portions created by the Initial Developer are Copyright (C) 1997-2002 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * ***** END LICENSE BLOCK ***** *) {*********************************************************} {* ABBREVIA: AbDfOutW.pas *} {*********************************************************} {* Deflate output sliding window *} {*********************************************************} unit AbDfOutW; {$I AbDefine.inc} interface uses Classes, AbDfBase; {Notes: TAbDfOutputWindow implements a sliding window on previously written data for the LZ77 dictionary decoding. AddLiteral will add a literal character at the current position and advance by one. AddLenDist will copy the required number of characters from the given position to the current position, and advance the stream on by the length. The class will periodically update the stream from the internal buffer. For normal Deflate, the internal buffer is 48K + 512 bytes in size. Once there is 48Kb worth of data, 16KB is written to file, and the buffer is shifted left by 16KB. We need to keep the last decoded 32KB in memory at all times. For Deflate64, the internal buffer is 96K + 512 bytes in size. Once there is 96Kb worth of data, 32KB is written to file, and the buffer is shifted left by 32KB. We need to keep the last decoded 64KB in memory at all times. } type TAbDfOutputWindow = class private FBuffer : PAnsiChar; FChecksum : longint; FCurrent : PAnsiChar; FLog : TAbLogger; FPartSize : longint; FSlideCount : integer; FStream : TStream; FStreamPos : longint; FTestOnly : boolean; FUseCRC32 : boolean; FWritePoint : PAnsiChar; protected function swGetChecksum : longint; procedure swWriteToStream(aFlush : boolean); public constructor Create(aStream : TStream; aUseDeflate64 : boolean; aUseCRC32 : boolean; aPartSize : longint; aTestOnly : boolean; aLog : TAbLogger); destructor Destroy; override; procedure AddBuffer(var aBuffer; aCount : integer); procedure AddLiteral(aCh : AnsiChar); procedure AddLenDist(aLen : integer; aDist : integer); function Position : longint; property Checksum : longint read swGetChecksum; property Log : TAbLogger read FLog; end; implementation uses SysUtils; {Notes: Meaning of the internal pointers: |==============================+------------------------+----| | | | FBuffer FCurrent FWritePoint Once FCurrent reaches or exceeds FWritePoint, FSlideCount bytes of data from FBuffer are written to the stream and the remaining data is moved back FSlideCount bytes, moving FCurrent along with it as well. } {===TAbDfOutputWindow==================================================} constructor TAbDfOutputWindow.Create(aStream : TStream; aUseDeflate64 : boolean; aUseCRC32 : boolean; aPartSize : longint; aTestOnly : boolean; aLog : TAbLogger); var Size : integer; LookAheadSize : integer; begin {allow the ancestor to initialize} inherited Create; {save parameters} FLog := aLog; FStream := aStream; FTestOnly := aTestOnly; if (aPartSize <= 0) then FPartSize := 0 else FPartSize := aPartSize; FUseCRC32 := aUseCRC32; if aUseCRC32 then FChecksum := -1 { CRC32 starts off with all bits set} else FCheckSum := 1; { Adler32 starts off with a value of 1} {set capacity of sliding window} if aUseDeflate64 then begin Size := 96 * 1024; FSlideCount := 32 * 1024; LookAheadSize := 64 * 1024; end else begin Size := 64 * 1024; FSlideCount := 32 * 1024; LookAheadSize := 258; end; GetMem(FBuffer, Size + LookAheadSize); {set the other internal pointers} FCurrent := FBuffer; FWritePoint := FBuffer + Size; if (FPartSize > Size) then FPartSize := Size; end; {--------} destructor TAbDfOutputWindow.Destroy; begin {write remaining data and free the buffer} if (FBuffer <> nil) then begin if (FCurrent <> FBuffer) then swWriteToStream(true); FreeMem(FBuffer); end; {destroy the ancestor} inherited Destroy; end; {--------} procedure TAbDfOutputWindow.AddBuffer(var aBuffer; aCount : integer); var Buffer : PAnsiChar; BytesToWrite : integer; begin {if we've advanced to the point when we need to write, do so} if (FCurrent >= FWritePoint) then swWriteToStream(false); {cast the user buffer to a PChar, it's easier to use} Buffer := @aBuffer; {calculate the number of bytes to copy} BytesToWrite := FWritePoint - FCurrent; if (BytesToWrite > aCount) then BytesToWrite := aCount; {move this block of bytes} Move(Buffer^, FCurrent^, BytesToWrite); {advance pointers and counters} inc(FCurrent, BytesToWrite); dec(aCount, BytesToWrite); {while there is still data to copy...} while (aCount > 0) do begin {advance the user buffer pointer} inc(Buffer, BytesToWrite); {write the sliding window chunk to the stream} swWriteToStream(false); {calculate the number of bytes to copy} BytesToWrite := FWritePoint - FCurrent; if (BytesToWrite > aCount) then BytesToWrite := aCount; {move this block of bytes} Move(Buffer^, FCurrent^, BytesToWrite); {advance pointers and counters} inc(FCurrent, BytesToWrite); dec(aCount, BytesToWrite); end; end; {--------} procedure AddLenDistToLog(aLog : TAbLogger; aPosn : longint; aLen : integer; aDist : integer; aOverLap : boolean); begin {NOTE the reason for this separate routine is to avoid string allocations and try..finally blocks in the main method: an optimization issue} if aOverLap then aLog.WriteLine(Format('%8x Len: %-3d, Dist: %-5d **overlap**', [aPosn, aLen, aDist])) else aLog.WriteLine(Format('%8x Len: %-3d, Dist: %-5d', [aPosn, aLen, aDist])); end; {--------} procedure TAbDfOutputWindow.AddLenDist(aLen : integer; aDist : integer); var i : integer; ToChar : PAnsiChar; FromChar : PAnsiChar; begin {log it} {$IFDEF UseLogging} if (FLog <> nil) then AddLenDistToLog(FLog, Position, aLen, aDist, (aLen > aDist)); {$ENDIF} {if the length to copy is less than the distance, just do a move} if (aLen <= aDist) then begin Move((FCurrent - aDist)^ , FCurrent^, aLen); end {otherwise we have to use a byte-by-byte copy} else begin FromChar := FCurrent - aDist; ToChar := FCurrent; for i := 1 to aLen do begin ToChar^ := FromChar^; inc(FromChar); inc(ToChar); end; end; {increment the current pointer} inc(FCurrent, aLen); {if we've reached the point requested, abort} if (FPartSize > 0) and ((FCurrent - FBuffer) >= FPartSize) then raise EAbPartSizedInflate.Create(''); {NOTE: This exception is expected during detection of .GZ and .TGZ files. (VerifyGZip)} {if we've advanced to the point when we need to write, do so} if (FCurrent >= FWritePoint) then swWriteToStream(false); end; {--------} procedure AddLiteralToLog(aLog : TAbLogger; aPosn : longint; aCh : AnsiChar); begin {NOTE the reason for this separate routine is to avoid string allocations and try..finally blocks in the main method: an optimization issue} if (' ' < aCh) and (aCh <= '~') then aLog.WriteLine(Format('%8x Char: %3d $%2x [%s]', [aPosn, ord(aCh), ord(aCh), aCh])) else aLog.WriteLine(Format('%8x Char: %3d $%2x', [aPosn, ord(aCh), ord(aCh)])); end; {--------} procedure TAbDfOutputWindow.AddLiteral(aCh : AnsiChar); begin {log it} {$IFDEF UseLogging} if (FLog <> nil) then AddLiteralToLog(FLog, Position, aCh); {$ENDIF} {add the literal to the buffer} FCurrent^ := aCh; {increment the current pointer} inc(FCurrent); {if we've reached the point requested, abort} if (FPartSize > 0) and ((FCurrent - FBuffer) >= FPartSize) then raise EAbPartSizedInflate.Create(''); {if we've advanced to the point when we need to write, do so} if (FCurrent >= FWritePoint) then swWriteToStream(false); end; {--------} function TAbDfOutputWindow.Position : longint; begin if FTestOnly then Result := FStreamPos + (FCurrent - FBuffer) else Result := FStream.Position + (FCurrent - FBuffer); end; {--------} function TAbDfOutputWindow.swGetChecksum : longint; begin {since the checksum is calculated by the method that flushes to the stream, make sure any buffered data is written out first} if (FCurrent <> FBuffer) then swWriteToStream(true); {the CRC32 checksum algorithm requires a post-conditioning step after being calculated (the result is NOTted), whereas Adler32 does not} if FUseCRC32 then Result := not FChecksum else Result := FChecksum; end; {--------} procedure TAbDfOutputWindow.swWriteToStream(aFlush : boolean); var FromPtr : PAnsiChar; begin {if the request was to flush, write all remaining data after updating the checksum} if aFlush then begin if FUseCRC32 then AbUpdateCRCBuffer(FChecksum, FBuffer^, FCurrent - FBuffer) else AbUpdateAdlerBuffer(FChecksum, FBuffer^, FCurrent - FBuffer); if FTestOnly then inc(FStreamPos, FCurrent - FBuffer) else FStream.WriteBuffer(FBuffer^, FCurrent - FBuffer); FCurrent := FBuffer; end {otherwise, update the checksum with the data in the sliding window chunk, write it out to the stream, and move the rest of the buffer back} else begin if FUseCRC32 then AbUpdateCRCBuffer(FChecksum, FBuffer^, FSlideCount) else AbUpdateAdlerBuffer(FChecksum, FBuffer^, FSlideCount); if FTestOnly then inc(FStreamPos, FSlideCount) else FStream.WriteBuffer(FBuffer^, FSlideCount); FromPtr := FBuffer + FSlideCount; Move(FromPtr^, FBuffer^, FCurrent - FromPtr); FCurrent := FCurrent - FSlideCount; end; end; {====================================================================} end.